Computational behavior of a feasible direction method for linear programming
نویسندگان
چکیده
We discuss a finite method of feasible directions for linear programs. The method begins with a BFS (basic feasible solution) and constructs a profitable direction by combining the updated columns of several nonbasic variables eligible to enter. Moving in this direction as far as possible, while retaining feasibility, leads to a point which is not in general a basic solution of the original problem, but corresponds to a BFS of an augmented problem with a new column. So this is called an interior move or a column adding move. Next we can either carry another interior move, or a reduction process which starts with the present feasible solution and leads to a BFS of the original problem with the same or better objective value. We show that interior moves and reduction processes can be mixed in many ways leading to different methods, all of which can be implemented by maintaining the basis inverse or a factorization of it. Results of a computational experiment are presented.
منابع مشابه
An L1-norm method for generating all of efficient solutions of multi-objective integer linear programming problem
This paper extends the proposed method by Jahanshahloo et al. (2004) (a method for generating all the efficient solutions of a 0–1 multi-objective linear programming problem, Asia-Pacific Journal of Operational Research). This paper considers the recession direction for a multi-objective integer linear programming (MOILP) problem and presents necessary and sufficient conditions to have unbounde...
متن کاملUNBOUNDEDNESS IN MOILP AND ITS EFFICIENT SOLUTIONS
In this paper we investigate Multi-Objective Integer Linear Programming (MOILP) problems with unbounded feasible region and introduce recession direction for MOILP problems. Then we present necessary and sufficient conditions to have unbounded feasible region and infinite optimal values for objective functions of MOILP problems. Finally we present some examples with unbounded feasible region and fi...
متن کاملSome new results on semi fully fuzzy linear programming problems
There are two interesting methods, in the literature, for solving fuzzy linear programming problems in which the elements of coefficient matrix of the constraints are represented by real numbers and rest of the parameters are represented by symmetric trapezoidal fuzzy numbers. The first method, named as fuzzy primal simplex method, assumes an initial primal basic feasible solution is at hand. T...
متن کاملOn the optimization of Dombi non-linear programming
Dombi family of t-norms includes a parametric family of continuous strict t-norms, whose members are increasing functions of the parameter. This family of t-norms covers the whole spectrum of t-norms when the parameter is changed from zero to infinity. In this paper, we study a nonlinear optimization problem in which the constraints are defined as fuzzy relational equations (FRE) with the Dombi...
متن کاملA Heuristic Approach for Solving LIP with the Optional Feasible or Infeasible Initial Solution Points
An interactive heuristic approach can offer a practical solution to the problem of linear integer programming (LIP) by combining an optimization technique with the Decision Maker’s (DM) judgment and technical supervision. This is made possible using the concept of bicriterion linear programming (BLP) problem in an integer environment. This model proposes two bicriterion linear programs for iden...
متن کامل